High-Temperature Ovens, Forced Convection Chamber Furnaces

Forced convection chamber furnace NA 250/45

These chamber furnaces with air circulation are characterized by their extremely high temperature uniformity. Hence, they are especially suitable for processes such as cooling, crystalizing, preheating, curing, but also for numerous processes in tool making. Due to the modular concept, the forced convection furnaces can be adjusted to the process requirements by adding suitable equipment.

Forced convection chamber furnace NA 15/65 as table-top model

- Tmax 450 °C, 650 °C, or 850 °C
- Horizontal air circulation
- Swing door hinged on the right
- Temperature uniformity up to +/- 4 °C according to DIN 17052-1 (model NA 15/65 up to +/- 5 °C) see page 71
- Optimum air flow and temperature uniformity through high circulation rates
- One frame sheet and rails for two additional trays included in the scope of delivery (NA 15/65 without frame sheet)
- Stainless steel air-baffles in the furnace for optimum air circulation
- Base frame included in the delivery, NA 15/65 designed as table-top model
- Air inlet and exhaust air flaps as additional equipment for using as drying oven
- Defined application within the constraints of the operating instructions
- NTLog Basic for Nabertherm controller: recording of process data with USB-flash drive
- Controls description see page 72

	Macormone
	nermal Process Technology
LU .	reaces and Next Treatment Plants for
For File Wall Mill All Pro- Pro- Mill Mill Mill Mill Mill Mill Mill Mil	reading, Mardening, Tempering mining, Pulmatine, Engines own Technology, Erysingsis, Basing own Technology, Simplifysis, Basing other Standards, Simplifysis driver Standards, Standards, Standards, Standards, Standards, Standards, Standards, Standards or Composition, GFSP, COPP discovery of the Coppering of the
100	vw.nabertherm.com

For additional information about forced convection chamber furnaces please ask for our separate catalog!

Model	Tmax	Inner dimensions in mm			Volume	Outer dimensions ³ in mm			Connected	Electrical	Weight
	°C	w	d	h	in I	W	D	Н	load kW	connection*	in kg
NA 30/45	450	290	420	260	30	1040	1290	1385	3.6	1-phase	285
NA 60/45	450	350	500	350	60	1100	1370	1475	6.6	3-phase	350
NA 120/45	450	450	600	450	120	1250	1550	1550	9.8	3-phase	460
NA 250/45	450	600	750	600	250	1350	1650	1725	12.8	3-phase	590
NA 500/45	450	750	1000	750	500	1550	1900	1820	18.8	3-phase	750
NA 15/65 ¹	650	295	340	170	15	470	790	460	2.8	1-phase	60
NA 30/65	650	290	420	260	30	870	1290	1385	7.0	3-phase ²	285
NA 60/65	650	350	500	350	60	910	1390	1475	9.0	3-phase	350
NA 120/65	650	450	600	450	120	990	1470	1550	13.0	3-phase	460
NA 250/65	650	600	750	600	250	1170	1650	1680	21.0	3-phase	590
NA 500/65	650	750	1000	750	500	1290	1890	1825	28.0	3-phase	750
N 30/85 HA	850	290	420	260	30	607 + 255	1175	1315	6.0	3-phase ²	195
N 60/85 HA	850	350	500	350	60	667 + 255	1250	1400	9.6	3-phase	240
N 120/85 HA	850	450	600	450	120	767 + 255	1350	1500	13.6	3-phase	310
N 250/85 HA	850	600	750	600	250	1002 + 255	1636	1860	21.0	3-phase	610
N 500/85 HA	850	750	1000	750	500	1152 + 255	1886	2010	31.0	3-phase	1030

¹Table-top model

^{*}Please see page 73 for more information about supply voltage

²Heating only between two phases